

Michelle P. Kuchera | 7 September 2021

Discussion of Event Generation and Simulation Needs

Simulation of physics processes

Monte Carlo Event Generators

Simulation of detector responses

Fast simulations

Full simulations

Analysis of simulated data

Reconstruction

Simulation of physics processes

Simulation of detector responses

Analysis of simulated data

HEPML-LivingReview: A Living Review of Machine Learning for Particle Physics

https://iml-wg.github.io/HEPML-LivingReview/

Generative Networks for LHC events [2008.08558]

Monte Carlo Event Generators

A Survey of Machine Learning-Based Physics Event Generation https://www.ijcai.org/proceedings/2021/0588.pdf

MLEGs	Data Source	Detector Effect	Reaction/Experiment	ML Model
[Hashemi et al., 2019]	Pythia8	DELPHES	$Z \rightarrow \mu^+\mu^-$	regular GAN
		+ pile-up effects		
[Otten et al., 2019]	MadGraph5 aMC@NLO	DELPHES3	$e^+e^- \rightarrow Z \rightarrow l^+l^-,$	VAE
			$pp ightarrow t \overline{t}$	
[Butter et al., 2019]	MadGraph5 aMC@NLO		$pp ightarrow t ar{t} ightarrow (bqar{q}')(ar{b}ar{q}q')$	MMD-GAN
[Di Sipio et al., 2019]	MadGraph5, Pythia8	DELPHES	$2 \rightarrow 2$ parton scattering	GAN+CNN
		+ FASTJET		
[Ahdida <i>et al.</i> , 2019]	Pythia8 + GEANT4		Search for Hidden Parti-	regular GAN
			cles (SHiP) experiment	
[Alanazi et al., 2020b]	Pythia8		electron-proton scatter-	MMD-
[Velasco et al., 2020]			ing	WGAN-GP,
				cGAN
[Martnez et al., 2020]	Pythia8	DELPHES	proton collision	GAN, cGAN
		particle-flow		
[Gao et al., 2020]	Sherpa		$pp \to W/Z + n$ jets	NF
[Howard <i>et al.</i> , 2021]	MadGraph5 + Pythia8	DELPHES	$Z \rightarrow e^+e^-$	SWAE
[Choi and Lim, 2021]	MadGraph5 + Pythia8	DELPHES	$pp o b ar{b} \gamma \gamma$	WGAN-GP

Table 1: List of existing MLEGs.

Simulation-based inference methods for particle physics [2010.06439]

Analysis of simulated data

Reconstruction

A Survey of Machine Learning-Based Physics Event Generation https://www.ijcai.org/proceedings/2021/0588.pdf

ML-based event generators

MLEGs	Data Source	e	Detector Effect	Reaction/Experiment	ML Model
[Hashemi <i>et al.</i> , 2019]	Pythia8		DELPHES	$Z o \mu^+\mu^-$	regular GAN
			+ pile-up effects		
[Otten et al., 2019]	MadGraph	5 aMC@NLO	DELPHES3	$e^+e^- \rightarrow Z \rightarrow l^+l^-,$	VAE
				$pp o tar{t}$	
[Butter et al., 2019]	MadGraph	5 aMC@NLO		pp o t ar t o (bqar q')(ar bar q q')	MMD-GAN
[Di Sipio <i>et al.</i> , 2019]	MadGraph			\rightarrow 2 parton scattering	GAN+CNN
[Ahdida <i>et al.</i> , 2019]	Pythia8 +	Auto	encoders	arch for Hidden Parti-	regular GAN
				s (SHiP) experiment	
[Alanazi et al., 2020b]	Pythia8			electron-proton scatter-	MMD-
[Velasco <i>et al.</i> , 2020]				ing	WGAN-GP,
					cGAN
[Martnez <i>et al.</i> , 2020]	Pythia8		DELPHES	proton collision	GAN, cGAN
			particle-flow		
[Gao et al., 2020]	Sherpa			$pp \to W/Z + n$ jets	NF
[Howard <i>et al.</i> , 2021]	MadGraph	5 + Pythia8	DELPHES	$Z \rightarrow e^+e^-$	SWAE
[Choi and Lim, 2021]	MadGraph	5 + Pythia8	DELPHES	$pp o b \bar{b} \gamma \gamma$	WGAN-GP

Table 1: List of existing MLEGs.

Al4EIC-exp: Experimental Applications of Artifical Intelligence for the EIC

A Survey of Machine Learning-Based Physics Event Generation https://www.ijcai.org/proceedings/2021/0588.pdf

ML-based event generators

MLEGs	Data Source	Detector Effect	Reaction/Experiment	ML Model
[Hashemi et al., 2019]	Pythia8	DELPHES	$Z \rightarrow \mu^+\mu^-$	regular GAN
		+ pile-up effects		_
[Otten et al., 2019]	MadGraph5 aMC@NLO	DELPHES3	$e^+e^- \rightarrow Z \rightarrow l^+l^-,$	VAE
			$ ightarrow t ar{t}$	
[Butter et al., 2019]	MadGraph Ge	nerative	ightarrow tar t ightarrow (bqar q')(ar bar q q')	MMD-GAN
[Di Sipio <i>et al.</i> , 2019]	MadGraph	vereniel	$\rightarrow 2$ parton scattering	GAN+CNN
		versarial		
[Ahdida <i>et al.</i> , 2019]	Pythia8 +	etworks	arch for Hidden Parti-	regular GAN
		ELWOIKS	s (SHiP) experiment	
[Alanazi et al., 2020b]	Pythia8		ctron-proton scatter-	MMD-
[Velasco <i>et al.</i> , 2020]			ing	WGAN-GP,
				cGAN
[Martnez <i>et al.</i> , 2020]	Pythia8	DELPHES	proton collision	GAN, cGAN
		particle-flow		
[Gao et al., 2020]	Sherpa		pp o W/Z + n jets	NF
[Howard <i>et al.</i> , 2021]	MadGraph5 + Pythia8	DELPHES	$Z \rightarrow e^+e^-$	SWAE
[Choi and Lim, 2021]	MadGraph5 + Pythia8	DELPHES	$pp o b \overline{b} \gamma \gamma$	WGAN-GP

Table 1: List of existing MLEGs.

Al4EIC-exp: Experimental Applications of Artifical Intelligence for the EIC

A Survey of Machine Learning-Based Physics Event Generation

https://www.ijcai.org/proceedings/2021/0588.pdf

ML-based event generators

MLEGs	Data Source	Detector Effect	Reaction/Experiment	ML Model
[Hashemi <i>et al.</i> , 2019]	Pythia8	DELPHES	$Z \rightarrow \mu^+\mu^-$	regular GAN
		+ pile-up effects		
[Otten et al., 2019]	MadGraph5 aMC@NLO	DELPHES3	$e^+e^- \rightarrow Z \rightarrow l^+l^-,$	VAE
			$pp ightarrow t ar{t}$	
[Butter <i>et al.</i> , 2019]	MadGraph5 aMC@NLO		pp ightarrow t ar t ightarrow (bqar q')(ar bar q q')	MMD-GAN
[Di Sipio <i>et al.</i> , 2019]	MadGraph		$\rightarrow 2$ parton scattering	GAN+CNN
	Name	lining Flavor		
[Ahdida <i>et al.</i> , 2019]	Pythia8 + Norma	lizing Flows		regular GAN
			s (SHiP) experiment	
[Alanazi et al., 2020b]	Pythia8		electron-proton scatter-	MMD-
[Velasco <i>et al.</i> , 2020]			ing	WGAN-GP,
				cGAN
[Martnez <i>et al.</i> , 2020]	Pythia8	DELPHES	proton collision	GAN, cGAN
		particle-flow		
[Gao et al., 2020]	Sherpa		$pp \to W/Z + n$ jets	NF
[Howard <i>et al.</i> , 2021]	MadGraph5 + Pythia8	DELPHES	$Z \rightarrow e^+e^-$	SWAE
[Choi and Lim, 2021]	MadGraph5 + Pythia8	DELPHES	$pp o b\bar{b}\gamma\gamma$	WGAN-GP

Table 1: List of existing MLEGs.

Variational Autoencoders

Image credit: Aditya Sharma

Examples in HEP/NP

- photon showers in high-granularity calorimeter.
 [2005.05334][2102.12491]
- Jet simulation: [2009.04842]
- Fast shower simulation in EM barrel calorimeter: [ATL-SOFT-PUB-2018-001]
- Zero Degree Calorimeters of ALICE [2006.06704]
- On graph structures: reconstruction of calorimeter data [2104.01725]

Variational Autoencoders

Examples in HEP/NP

- photon showers in high-granularity calorimeter.
 [2005.05334][2102.12491]
- Jet simulation: [2009.04842]
- Fast shower simulation in EM barrel calorimeter: [ATL-SOFT-PUB-2018-001]
- Zero Degree Calorimeters of ALICE [2006.06704]
- On graph structures: reconstruction of calorimeter data [2104.01725]

Variational Autoencoders

FIG. 3. Original simulated top quark initiated jet (top) compared to the GVAE-reconstructed jet (bottom) in each of the three channels. The energy range is log-scaled for better visualization.

Examples in HEP/NP

- photon showers in high-granularity calorimeter.
 [2005.05334][2102.12491]
- Jet simulation: [2009.04842]
- Fast shower simulation in EM barrel calorimeter: [ATL-SOFT-PUB-2018-001]
- Zero Degree Calorimeters of ALICE [2006.06704]
- On graph structures: reconstruction of calorimeter data [2104.01725]

Generative Adversarial Networks

14

GAN (DCGAN)

WGAN

Al4EIC-exp: Experimental Applications of Artifical Intelligence for the EIC

Generative models / density estimation

• GANs:

- . Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
- Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters [DOI]
- CaloGAN : Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks [DOI]
- Networks [DOI]
- How to GAN Event Subtraction [DOI]
- Particle Generative Adversarial Networks for full-event simulation at the LHC and their application to pileup description [DOI]
- How to GAN away Detector Effects [DOI]
- 3D convolutional GAN for fast simulation
- . Lund jet images from generative and cycle-consistent adversarial networks [DOI]
- How to GAN LHC Events [DOI]
- Model [DOI]
- DijetGAN: A Generativ the LHC [DOI]
- LHC analysis-specific datasets with Generative Adversarial Networks
- . Generative Models for Fast Calorimeter Simulation.LHCb case [DOI]
- Deep generative models for fast shower simulation in ATLAS
- Regressive and generative neural networks for scalar field theory [DOI] ■ Three dimensional Generative Adversarial Networks for fast simulation

- Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial Networks [DOI]
- Generating and refining particle detector simulations using the Wasserstein distance in adnetworks [DOI]
- Generative models for
- RICH 2018 [DOI]
- GANs for generating EFT models [DOI]
- · Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network [DOI]
- Reducing Autocorrelation Times in Lattice Simulations with Generative Adversarial Networks [DOI]
- Tips and Tricks for Training GANs with Physics Constraints
- Controlling Physical Attributes in GAN-Accelerated Simulation of Electro [DOI]
- Next Generation Generative Neural Networks for HEP
- Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for
- Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics [DOI]
- . Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed
- Al-based Monte Carlo event generator for electron-proton scattering DCTRGAN: Improving the Precision of Generative Models with Reweighting [DOI]
- GANplifying Event Samples
- Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics
- Simulating the Time Projection Chamber responses at the MPD detector using Generative Adversarial Networks Explainable machine learning of the underlying physics of high-energy particle collisions
- A Data-driven Event Generator for Hadron Colliders using Wasserstein Generative Adversarial
- Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversaria
- Network Use Case [DOI]
- Calorimeter Simulations
- Compressing PDF sets using generative adversarial networks

Generative Adversarial Networks

Event generation

FAT-GAN: Y. Alanazi, et. al. IJCAI-21

Fig. 2. Comparison of the synthetic (dotted) and true (solid) E^\prime distributions at reaction energies: E=10,15,20,25,30,35,40,45,50~GeV. The black triangles specify the trained energy levels.

cFAT-GAN: L. Velasco, et. al. ICMLA-21

Generative Adversarial Networks

Event generation

Point-cloud GAN Kansal, et. Al [2106.11535]

Generative Adversarial Networks

Simulation

caloGAN (ATLAS)
Paganini, et. al [1712.10321]

Silicon- Tungsten calorimeter of the proposed International Large Detector Buhmann , et. al [2005.05334]

Fig. 5 Examples of individual 50 GeV photon showers generated by Geant4 (left), the GAN (center left), WGAN (center right), and BIB-AE (right) architectures. Colors encode the deposited energy per cell.

Normalizing Flows

Maps complex distributions by transforming a probability density through a series of invertible mappings.

Normalizing Flows

caloFLOW (simplified ATLAS) Krause, et. al [2106.05285]

Figure 5. Average shower shapes for e^+ . Columns are calorimeter layers 0 to 2, top row shows CaloFlow, center row Geant4, and bottom row CaloGAN

Future Directions for EIC simulations?

- Rare opportunity to align AI goals early (like in this workshop)
- Cohesive effort towards community use. Benchmark points.
- Look towards powerful generative models a la natural language models: giant trained models that can be fine tuned
- Engage with the computer science / data science communities as collaborators.
- **Rethink workflow.** Can we train models to map p(detector | event gen params)?

Common Software Effort

* CORE adapts existing software for their needs and has a far smaller software effort than other proto-collaborations.

HEP Community

Data Science Community

Collaboration with **Geant4** and **HEP Software Foundation**

- EIC as a driver for research in CS and applied math
- scientific, systematic approach to AI / ML approaches to NP
- activation functions, DNN design particular for NP
- building efficient DNNs no more complex than necessary

Common Software Effort

HEP Community

Data Science Community

Collaboration with Geant4 and HEP Software Foundation

- EIC as a driver for research in CS and applied math
- scientific, systematic approach to AI / ML approaches to NP
- activation functions, DNN design particular for NP
- building efficient DNNs no more complex than necessary

Engaging the data science community in AI simulation efforts

Interesting testing ground for generative models

- · Model meaningful, non-standard distributions
- Physics-embedded metrics for evaluating models

Uniquely structured data

- Event generators: continuous variables of variable length
- Detector simulation: highly structured with correlations
- Interfaces between representations
- Uncertainty quantification: stochastic processes, statistical, systematic uncertainties

Data Science Community

- EIC as a driver for research in CS and applied math
- scientific, systematic approach to AI / ML approaches to NP
- activation functions, DNN design particular for NP
- building efficient DNNs no more complex than necessary

Engaging the data science community in AI simulation efforts

Interesting testing ground for generative models

- · Model meaningful, non-standard distributions
- Physics-embedded metrics for evaluating models

Uniquely structured data

- Event generators: continuous variables of variable length
- Detector simulation: highly structured with correlations
- Interfaces between representations
- Uncertainty quantification: stochastic processes, statistical, systematic uncertainties

Data Science Community

Engage as collaborators

Engaging the data science community in Al simulation efforts

Field moving away from hypertuning image and language models

· We have unique data and challenges

Uniquely structured data

- · Event generators: continuous variables of variable length
 - Detector simulation: highly structured with correlations
 - Interfaces between representations
- Uncertainty quantification: stochastic processes, statistical, systematic uncertainties

Data Science Community

Engage as collaborators

Summary

- Ai has the potential for large impacts on Simulation for the EIC.
- Large body of prior related work. Often at "bleeding edge" of AI research. Less commonly used for simulation in practice. Requires work.
- Simulation R&D is most efficiently done in common projects and in collaboration with other fields, e.g., HEP or data science.
- **Do not expect replacement** of core tools, e.g., general-purpose MCEGs or Geant4.

